Product contributions
It’s often convenient to decompose an index into the (additive)
contribution of each price relative, also known as the percent-change
contribution. This can be done with the same work flow used in
vignette("piar")
, specifying contrib = TRUE
when calling elemental_index()
.
library(piar)
# Make an aggregation structure.
ms_weights[c("level1", "level2")] <-
expand_classification(ms_weights$classification)
pias <- ms_weights[c("level1", "level2", "business", "weight")] |>
as_aggregation_structure()
# Make elemental index with contributions.
elementals <- ms_prices |>
transform(
relative = price_relative(price, period = period, product = product)
) |>
elemental_index(
relative ~ period + business,
product = product,
na.rm = TRUE,
contrib = TRUE
)
As with index values, percent-change contributions for a given level of the index can be extracted as a matrix.
contrib(elementals, level = "B1")
## 202001 202002 202003 202004
## 1 0 0.0000000 0.0000000 0
## 2 NA NA -0.6657061 0
## 3 0 -0.1050903 NA NA
Or as a data frame.
contrib2DF(elementals, level = "B1")
## period level product value
## 1 202001 B1 1 0.0000000
## 2 202001 B1 2 NA
## 3 202001 B1 3 0.0000000
## 4 202002 B1 2 NA
## 5 202002 B1 3 -0.1050903
## 6 202003 B1 2 -0.6657061
## 7 202003 B1 3 NA
## 8 202004 B1 3 NA
Aggregating the elemental indexes automatically aggregates percent-change contributions, so no extra steps are needed after the elemental indexes are made.
## 202001 202002 202003 202004
## 1 0 0.00000000 0.0000000 0.000000000
## 10 0 -0.08782076 0.2731949 -0.078173579
## 11 0 0.00000000 NA 0.059392635
## 12 0 0.00000000 NA 1.322915301
## 2 NA NA -0.2928098 0.000000000
## 3 0 -0.06718490 NA NA
## 4 0 NA NA -0.018209690
## 5 0 NA NA 0.094562963
## 6 0 NA NA 0.427935081
## 7 0 0.51646606 -0.2054665 -0.011177530
## 8 0 0.01906845 0.1755868 -0.003784845
## 9 0 -0.07980493 0.1125689 -0.058699008
Index contributions
After an index has been calculated, it’s often useful to compute the contribution of higher-level indexes towards the total index. The easiest way to do this with a collection of pre-computed index values is to simply coerce them into an index object with the index values as contributions and reaggregate with a restricted aggregation structure.
If the index values are already an index object, it’s also possible to directly replace the contributions.
reset_contrib <- function(index) {
for (l in levels(index)) {
contrib(index, l) <- as.matrix(index[l]) - 1
}
index
}
index <- reset_contrib(index)
We now cut the aggregation structure to keep only the top two levels and reaggregate to get the contribution of the second-level indexes to the top level index.
## 202001 202002 202003 202004
## 11 0 0.184488 0.03869481 0.3524534
## 12 0 0.116236 0.02437952 1.3823079
The same approach works with a fixed-base index as well.
## 202001 202002 202003 202004
## 11 0 0.184488 0.2348192 0.7221798
## 12 0 0.116236 0.1479470 2.0593557