Identify missing values in a price index.
Arguments
- x
A price index, as made by, e.g.,
elementary_index().- recursive
Check if
xalso has missing percent-change contributions. By default only index values are checked for missingness.
Value
is.na() returns a logical matrix, with a row for each level of x and a
columns for each time period, that indicates which index values are missing.
anyNA() returns TRUE if any index values are missing, or percent-change
contributions (if recursive = TRUE).
See also
Other index methods:
[.piar_index(),
aggregate.piar_index,
as.data.frame.piar_index(),
as.ts.piar_index(),
chain(),
contrib(),
head.piar_index(),
levels.piar_index(),
mean.piar_index,
merge.piar_index(),
split.piar_index(),
stack.piar_index(),
time.piar_index(),
window.piar_index()
Examples
index <- as_index(matrix(c(1, 2, 3, NA, 5, NA), 2))
anyNA(index)
#> [1] TRUE
is.na(index)
#> time
#> levels 1 2 3
#> 1 FALSE FALSE FALSE
#> 2 FALSE TRUE TRUE
# Carry forward imputation
index[is.na(index)] <- 1
index
#> Period-over-period price index for 2 levels over 3 time periods
#> time
#> levels 1 2 3
#> 1 1 3 5
#> 2 2 1 1
