Identify missing values in a price index.
Arguments
- x
A price index, as made by, e.g.,
elemental_index()
.- recursive
Check if
x
also has missing percent-change contributions. By default only index values are checked for missingness.
Value
is.na()
returns a logical matrix, with a row for each level of x
and a
columns for each time period, that indicates which index values are missing.
anyNA()
returns TRUE
if any index values are missing, or percent-change
contributions (if recursive = TRUE
).
See also
Other index methods:
[.piar_index()
,
aggregate.piar_index
,
as.data.frame.piar_index()
,
as.ts.piar_index()
,
chain()
,
contrib()
,
head.piar_index()
,
levels.piar_index()
,
mean.piar_index
,
merge.piar_index()
,
split.piar_index()
,
stack.piar_index()
,
time.piar_index()
,
window.piar_index()
Examples
index <- as_index(matrix(c(1, 2, 3, NA, 5, NA), 2))
anyNA(index)
#> [1] TRUE
is.na(index)
#> time
#> levels 1 2 3
#> 1 FALSE FALSE FALSE
#> 2 FALSE TRUE TRUE
# Carry forward imputation
index[is.na(index)] <- 1
index
#> Period-over-period price index for 2 levels over 3 time periods
#> time
#> levels 1 2 3
#> 1 1 3 5
#> 2 2 1 1